Adaptive resolution min-max classifiers

نویسندگان

  • Antonello Rizzi
  • Massimo Panella
  • Fabio Massimo Frattale Mascioli
چکیده

A high automation degree is one of the most important features of data driven modeling tools and it should be taken into consideration in classification systems design. In this regard, constructive training algorithms are essential to improve the automation degree of a modeling system. Among neuro-fuzzy classifiers, Simpson's (1992) min-max networks have the advantage of being trained in a constructive way. The use of the hyperbox, as a frame on which different membership functions can be tailored, makes the min-max model a flexible tool. However, the original training algorithm evidences some serious drawbacks, together with a low automation degree. In order to overcome these inconveniences, in this paper two new learning algorithms for fuzzy min-max neural classifiers are proposed: the adaptive resolution classifier (ARC) and its pruning version (PARC). ARC/PARC generates a regularized min-max network by a succession of hyperbox cuts. The generalization capability of ARC/PARC technique mostly depends on the adopted cutting strategy. By using a recursive cutting procedure (R-ARC and R-PARC) it is possible to obtain better results. ARC, PARC, R-ARC, and R-PARC are characterized by a high automation degree and allow to achieve networks with a remarkable generalization capability. Their performances are evaluated through a set of toy problems and real data benchmarks. The paper also proposes a suitable index that can be used for the sensitivity analysis of the classification systems under consideration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RESOLUTION OF NONLINEAR OPTIMIZATION PROBLEMS SUBJECT TO BIPOLAR MAX-MIN FUZZY RELATION EQUATION CONSTRAINTS USING GENETIC ALGORITHM

This paper studies the nonlinear optimization problems subject to bipolar max-min fuzzy relation equation constraints. The feasible solution set of the problems is non-convex, in a general case. Therefore, conventional nonlinear optimization methods cannot be ideal for resolution of such problems. Hence, a Genetic Algorithm (GA) is proposed to find their optimal solution. This algorithm uses th...

متن کامل

Max-Min averaging operator: fuzzy inequality systems and resolution

 Minimum and maximum operators are two well-known t-norm and s-norm used frequently in fuzzy systems. In this paper, two different types of fuzzy inequalities are simultaneously studied where the convex combination of minimum and maximum operators is applied as the fuzzy relational composition. Some basic properties and theoretical aspects of the problem are derived and four necessary and suffi...

متن کامل

Min-max classifiers: Learnability, design and application

This paper introduces the class of min max classifiers. These are binary-valued functions that can be used as pattern classifiers of both real-valued and binary-valued feature vectors. They are also lattice-theoretic generalization of Boolean functions and are also related to feed-forward neural networks and morphological signal operators. We studied supervised learning of these classifiers und...

متن کامل

Mammogram Enhancement Using Quadratic Adaptive Volterra Filter- a Comparative Analysis in Spatial and Frequency Domain

Early breast cancer in women can be detected efficiently, by processing Mammograms in an effective way. Mammographic images are affected by noise which has low contrast and poor radiographic resolution based on illperformance of X-ray hardware systems. This leads to improper visualization of lesion detail. Generally Non-linear filters are preferred for image enhancement applications. Because th...

متن کامل

Word Sense Disambiguation by Combining Classifiers with an Adaptive Selection of Context Representation

Word Sense Disambiguation (WSD) is the task of choosing the right sense of a polysemous word given a context. It is obviously essential for many natural language processing applications such as human-computer communication, machine translation, and information retrieval. In recent years, much attention have been paid to improve the performance of WSD systems by using combination of classifiers....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 13 2  شماره 

صفحات  -

تاریخ انتشار 2002